
Presented by:

Jiaxi Li

Scaling LLM Test-Time Compute Optimally can be 

More Effective than Scaling Model Parameters

[arXiv 24.08]

TL; DR. 

Explores two main strategies (PRM & Refining the Proposal Distribution)

for scaling LLM reasoning at test-time.



What is Scaling Law

• For training OpenAI o1
• Scaling Law for both train-time 

and test-time.

2[1] OpenAI “Learning to Reason with LLMs”. 2024.09



What is Scaling Law

• For training OpenAI o1
• Scaling Law for both train-time 

and test-time.

• Question

2[1] OpenAI “Learning to Reason with LLMs”. 2024.09



What is Scaling Law

• For training OpenAI o1
• Scaling Law for both train-time 

and test-time.

• Question
• What do they mean by “test-

time compute”? 
And how to scale up “test-time 
compute”?

2[1] OpenAI “Learning to Reason with LLMs”. 2024.09



What is Scaling Law

• For training OpenAI o1
• Scaling Law for both train-time 

and test-time.

• Question
• What do they mean by “test-

time compute”? 
And how to scale up “test-time 
compute”?

• A shift from “system-1” to 
“system-2” reasoning.

2[1] OpenAI “Learning to Reason with LLMs”. 2024.09



How to scale up test-time compute?

• For optimizing input (prompting)

3



How to scale up test-time compute?

• For optimizing input (prompting)
• Basic prompting techniques

3



How to scale up test-time compute?

• For optimizing input (prompting)
• Basic prompting techniques

• Few-shot prompting

3



How to scale up test-time compute?

• For optimizing input (prompting)
• Basic prompting techniques

• Few-shot prompting

• CoT prompting

3



How to scale up test-time compute?

• For optimizing input (prompting)
• Basic prompting techniques

• Few-shot prompting

• CoT prompting

• Learning to prompt (using neural networks)

3



How to scale up test-time compute?

• For optimizing input (prompting)
• Basic prompting techniques

• Few-shot prompting

• CoT prompting

• Learning to prompt (using neural networks)
• RLPrompt[2]

3



How to scale up test-time compute?

• For optimizing input (prompting)
• Basic prompting techniques

• Few-shot prompting

• CoT prompting

• Learning to prompt (using neural networks)
• RLPrompt[2]

• DSPy[3]

3



How to scale up test-time compute?

• For optimizing input (prompting)
• Basic prompting techniques

• Few-shot prompting

• CoT prompting

• Learning to prompt (using neural networks)
• RLPrompt[2]

• DSPy[3]

• Already built into python packages and widely used

3



How to scale up test-time compute?

• For optimizing input (prompting)
• Basic prompting techniques

• Few-shot prompting

• CoT prompting

• Learning to prompt (using neural networks)
• RLPrompt[2]

• DSPy[3]

• Already built into python packages and widely used

3

[2] Deng et al., “RLPrompt: Optimizing Discrete Text Prompts with Reinforcement Learning” EMNLP 2022



How to scale up test-time compute?

• For optimizing input (prompting)
• Basic prompting techniques

• Few-shot prompting

• CoT prompting

• Learning to prompt (using neural networks)
• RLPrompt[2]

• DSPy[3]

• Already built into python packages and widely used

3[3] Khattab et al., “DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines” R0-FoMo@NeurIPS 2023

[2] Deng et al., “RLPrompt: Optimizing Discrete Text Prompts with Reinforcement Learning” EMNLP 2022



How to scale up test-time compute?

• For optimizing input (prompting)
• Basic prompting techniques

• Few-shot prompting

• CoT prompting

• Learning to prompt (using neural networks)
• RLPrompt[2]

• DSPy[3]

• Already built into python packages and widely used

• And many other techniques for optimizing prompts…

3[3] Khattab et al., “DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines” R0-FoMo@NeurIPS 2023

[2] Deng et al., “RLPrompt: Optimizing Discrete Text Prompts with Reinforcement Learning” EMNLP 2022



How to scale up test-time compute?

• For refining output distribution
• How to let LLMs generate better CoT rationales?

• SFT works.

• SFT with collected CoT rationales can let LLM generate better reasoning traces.

4



How to scale up test-time compute?

• For refining output distribution
• How to let LLMs generate better CoT rationales?

• SFT works.

• SFT with collected CoT rationales can let LLM generate better reasoning traces.

• Take a step further, how to let LLM keep revising its CoT rationales and 
gradually approach a more reasonable answer?

4



How to scale up test-time compute?

• For refining output distribution
• How to let LLMs generate better CoT rationales?

• SFT works.

• SFT with collected CoT rationales can let LLM generate better reasoning traces.

• Take a step further, how to let LLM keep revising its CoT rationales and 
gradually approach a more reasonable answer?
• Tree-of-Thought

4



How to scale up test-time compute?

• For refining output distribution
• How to let LLMs generate better CoT rationales?

• SFT works.

• SFT with collected CoT rationales can let LLM generate better reasoning traces.

• Take a step further, how to let LLM keep revising its CoT rationales and 
gradually approach a more reasonable answer?
• Tree-of-Thought

• Monte-Carlo Tree Search

4



How to scale up test-time compute?

• For refining output distribution
• How to let LLMs generate better CoT rationales?

• SFT works.

• SFT with collected CoT rationales can let LLM generate better reasoning traces.

• Take a step further, how to let LLM keep revising its CoT rationales and 
gradually approach a more reasonable answer?
• Tree-of-Thought

• Monte-Carlo Tree Search

• …

4



How to scale up test-time compute?

• For refining output distribution
• How to let LLMs generate better CoT rationales?

• SFT works.

• SFT with collected CoT rationales can let LLM generate better reasoning traces.

• Take a step further, how to let LLM keep revising its CoT rationales and 
gradually approach a more reasonable answer?
• Tree-of-Thought

• Monte-Carlo Tree Search

• …

• Both of them contribute to training a verifier to help refine the output 
distribution at test-time.

4



The scaling-up strategies for test-time

• Scaling Test-Time Compute via Verifiers
• Training verifiers to search

• Search Methods Against a verifier

• Refining the Proposal Distribution
• Parallel Sampling v.s. Sequential Revisions

• Trading off between them

5



The scaling-up strategies for test-time

• Scaling Test-Time Compute via Verifiers
• Training verifiers to search

• Search Methods Against a verifier

• Refining the Proposal Distribution
• Parallel Sampling v.s. Sequential Revisions

• Trading off between them

• [Q] Aren’t they talking about test-time? Why are they still training?

5



The scaling-up strategies for test-time

• Scaling Test-Time Compute via Verifiers
• Training verifiers to search

• Search Methods Against a verifier

• Refining the Proposal Distribution
• Parallel Sampling v.s. Sequential Revisions

• Trading off between them

• [Q] Aren’t they talking about test-time? Why are they still training?

• To scale up compute at test-time, 
we cannot do it without post-training.

5



Scaling Test-Time Compute via Verifiers

• So what are verifiers?

6A CoT rationale



Scaling Test-Time Compute via Verifiers

• So what are verifiers?
• ORM: Outcome-supervised Reward Model

6A CoT rationale



Scaling Test-Time Compute via Verifiers

• So what are verifiers?
• ORM: Outcome-supervised Reward Model

6A CoT rationale



Scaling Test-Time Compute via Verifiers

• So what are verifiers?
• ORM: Outcome-supervised Reward Model

6A CoT rationale

ORM <= Output + Label



Scaling Test-Time Compute via Verifiers

• So what are verifiers?
• ORM: Outcome-supervised Reward Model

• PRM: Process-supervised Reward Model

6A CoT rationale

ORM <= Output + Label



Scaling Test-Time Compute via Verifiers

• So what are verifiers?
• ORM: Outcome-supervised Reward Model

• PRM: Process-supervised Reward Model

6A CoT rationale

ORM <= Output + Label

PRM <= Output + Label + supervision of rationales



Scaling Test-Time Compute via Verifiers

• So what are verifiers?
• ORM: Outcome-supervised Reward Model

• PRM: Process-supervised Reward Model

6A CoT rationale

ORM <= Output + Label

PRM <= Output + Label + supervision of rationales



Scaling Test-Time Compute via Verifiers

• So what are verifiers?
• ORM: Outcome-supervised Reward Model

• PRM: Process-supervised Reward Model

6A CoT rationale

ORM <= Output + Label

PRM <= Output + Label + supervision of rationales

Next question: How to train a PRM?



Scaling Test-Time Compute via Verifiers

• How to train a PRM?
(We only discuss the case that you cannot afford the annotations by human. )

7



Scaling Test-Time Compute via Verifiers

• How to train a PRM?
(We only discuss the case that you cannot afford the annotations by human. )

• Instead of directly annotating each reasoning step, we estimate the quality of them.

7



Scaling Test-Time Compute via Verifiers

• How to train a PRM?
(We only discuss the case that you cannot afford the annotations by human. )

• Instead of directly annotating each reasoning step, we estimate the quality of them.

• The quality of a reasoning step is defined as its potential to deduce the correct answer.[4] 

(Just like a soft label)

7



Scaling Test-Time Compute via Verifiers

• How to train a PRM?
(We only discuss the case that you cannot afford the annotations by human. )

• Instead of directly annotating each reasoning step, we estimate the quality of them.

• The quality of a reasoning step is defined as its potential to deduce the correct answer.[4] 

(Just like a soft label)

7
[4] Wang et al., “Math-Shepherd: Verify and Reinforce LLMs Step-by-step without Human Annotations” arXiv 24.02



Scaling Test-Time Compute via Verifiers

• How to train a PRM?
(We only discuss the case that you cannot afford the annotations by human. )

• Instead of directly annotating each reasoning step, we estimate the quality of them.

• The quality of a reasoning step is defined as its potential to deduce the correct answer.[4] 

(Just like a soft label)

7
[4] Wang et al., “Math-Shepherd: Verify and Reinforce LLMs Step-by-step without Human Annotations” arXiv 24.02



Scaling Test-Time Compute via Verifiers

• How to score with the verifier (Answer aggregation)

8

……



Scaling Test-Time Compute via Verifiers

• How to score with the verifier (Answer aggregation)
• To select the best-of-N answers with the PRM, we need to aggregate across all the 

per-step scores for each answer to determine the best candidate.

8

……



Scaling Test-Time Compute via Verifiers

• How to score with the verifier (Answer aggregation)
• To select the best-of-N answers with the PRM, we need to aggregate across all the 

per-step scores for each answer to determine the best candidate.
• Step-wise aggregation (inside-answer)

8

……



Scaling Test-Time Compute via Verifiers

• How to score with the verifier (Answer aggregation)
• To select the best-of-N answers with the PRM, we need to aggregate across all the 

per-step scores for each answer to determine the best candidate.
• Step-wise aggregation (inside-answer)

• Inter-answer aggregation (between-answer)

8

……



Scaling Test-Time Compute via Verifiers

• How to score with the verifier (Answer aggregation)

9

A CoT rationale

[5] Lightman et al. (OpenAI), “Let’s verify step by step” ICLR 2024



Scaling Test-Time Compute via Verifiers

• How to score with the verifier (Answer aggregation)
• Step-wise aggregation 

9

A CoT rationale

[5] Lightman et al. (OpenAI), “Let’s verify step by step” ICLR 2024



Scaling Test-Time Compute via Verifiers

• How to score with the verifier (Answer aggregation)
• Step-wise aggregation 

• (How to calculate the score for a single answer?)

9

A CoT rationale

[5] Lightman et al. (OpenAI), “Let’s verify step by step” ICLR 2024



Scaling Test-Time Compute via Verifiers

• How to score with the verifier (Answer aggregation)
• Step-wise aggregation 

• (How to calculate the score for a single answer?)

• Some work[4][5] aggregating the per-step scores by taking the 
product or minimum

9

A CoT rationale

[5] Lightman et al. (OpenAI), “Let’s verify step by step” ICLR 2024



Scaling Test-Time Compute via Verifiers

• How to score with the verifier (Answer aggregation)
• Step-wise aggregation 

• (How to calculate the score for a single answer?)

• Some work[4][5] aggregating the per-step scores by taking the 
product or minimum

• This paper finds that using the score of the last step performs best 
with their PRM.

9

A CoT rationale

[5] Lightman et al. (OpenAI), “Let’s verify step by step” ICLR 2024



Scaling Test-Time Compute via Verifiers

• How to score with the verifier (Answer aggregation)
• Step-wise aggregation 

• (How to calculate the score for a single answer?)

• Some work[4][5] aggregating the per-step scores by taking the 
product or minimum

• This paper finds that using the score of the last step performs best 
with their PRM.

• Inter-answer aggregation

9

A CoT rationale

[5] Lightman et al. (OpenAI), “Let’s verify step by step” ICLR 2024



Scaling Test-Time Compute via Verifiers

• How to score with the verifier (Answer aggregation)
• Step-wise aggregation 

• (How to calculate the score for a single answer?)

• Some work[4][5] aggregating the per-step scores by taking the 
product or minimum

• This paper finds that using the score of the last step performs best 
with their PRM.

• Inter-answer aggregation
• (How to choose the best answer candidate)

9

A CoT rationale

[5] Lightman et al. (OpenAI), “Let’s verify step by step” ICLR 2024



Scaling Test-Time Compute via Verifiers

• How to score with the verifier (Answer aggregation)
• Step-wise aggregation 

• (How to calculate the score for a single answer?)

• Some work[4][5] aggregating the per-step scores by taking the 
product or minimum

• This paper finds that using the score of the last step performs best 
with their PRM.

• Inter-answer aggregation
• (How to choose the best answer candidate)

• Marginalizing scores across all solutions with the same final answer. 
(“weighted aggregation”)

9

A CoT rationale

[5] Lightman et al. (OpenAI), “Let’s verify step by step” ICLR 2024



Scaling Test-Time Compute via Verifiers

• Search Methods Against a verifier

10



Scaling Test-Time Compute via Verifiers

• Search Methods Against a verifier
• (weighted) Best-of-N

• Just sample N answers independently 
from the base LLM

• Select the candidate according to the 
PRM’s answer aggregation calculation.

11



Scaling Test-Time Compute via Verifiers

• Search Methods Against a verifier
• Beam Search

• Control a total number N and a beam 
width M (N=4, M=2)

• Similar to the to the LM decoding strategy 
“beam search” (Difference that each node 
denotes the intermediate reasoning step 
here.)

12



Scaling Test-Time Compute via Verifiers

• Search Methods Against a verifier
• Lookahead Search

• Based on beam search, it modifies how to 
evaluate each step.

• Rollout k steps and having the score at the 
k-th step as the score of current reasoning 
rationale.

• (Main idea is just like A* / Monte-Carlo 
Tree Search)

13



Scaling Test-Time Compute via Verifiers

• Experimental setup
• Two main factors affecting the performances

• Generation budget
• e.g. Number of sampling

• Difficulty of question
• Easy questions may do not require much reasoning, while hard questions need much 

reasoning.

14



Scaling Test-Time Compute via Verifiers

• Results & Findings 
• When budget is small, 

beam search > best-of-N > lookahead

• When budget is large,
best-of-N > beam search > lookahead

15



Scaling Test-Time Compute via Verifiers

• Results & Findings 
• When budget is small, 

beam search > best-of-N > lookahead

• When budget is large,
best-of-N > beam search > lookahead

• Possible explanations

15



Scaling Test-Time Compute via Verifiers

• Results & Findings 
• When budget is small, 

beam search > best-of-N > lookahead

• When budget is large,
best-of-N > beam search > lookahead

• Possible explanations
• When budget is small, we need more 

sophisticated searching strategy (simply 
sampling may be hard to hit).

15



Scaling Test-Time Compute via Verifiers

• Results & Findings 
• When budget is small, 

beam search > best-of-N > lookahead

• When budget is large,
best-of-N > beam search > lookahead

• Possible explanations
• When budget is small, we need more 

sophisticated searching strategy (simply 
sampling may be hard to hit).

• When budget is large, it will alleviate this 
problem.

15



Scaling Test-Time Compute via Verifiers

• Results & Findings 
• When budget is small, 

beam search > best-of-N > lookahead

• When budget is large,
best-of-N > beam search > lookahead

• Possible explanations
• When budget is small, we need more 

sophisticated searching strategy (simply 
sampling may be hard to hit).

• When budget is large, it will alleviate this 
problem.

• Lookahead search generally underperforms, 
probably due to over-optimizing for searching.

15



Scaling Test-Time Compute via Verifiers

• Results & Findings
(Four Bars under each bin demotes the 
searching budget: 4, 16, 64, 256)

• On simplest questions (1, 2),
best-of-N > beam search

• On hard questions (3, 4),
beam search > best-of-N

• On the hardest questions (5),
nothing works

16



Refining the Proposal Distribution

• LLMs can learn to generate 
better rationales via SFT with 
high-quality data.

• After that, we can let LLMs 
refine their proposal 
distributions.

• Primarily there are two 
strategies for refining output 
distribution
• Parallel sampling

• Sequential revisions
17



Refining the Proposal Distribution

• Two major methods for refining the proposal distribution
• Parallel Sampling v.s. Sequential Revisions

• (global search v.s. local refinement)

18



Refining the Proposal Distribution

• However, there are many problems

19



Refining the Proposal Distribution

• However, there are many problems
• E.g.

19



Refining the Proposal Distribution

• However, there are many problems
• E.g.

• For sequential revision, the last attempt is not guaranteed to be correct. 
(There is case that it is revised correctly in the middle, and then revised 
incorrectly at last.)

19



Refining the Proposal Distribution

• However, there are many problems
• E.g.

• For sequential revision, the last attempt is not guaranteed to be correct. 
(There is case that it is revised correctly in the middle, and then revised 
incorrectly at last.)

• For both of them, it’s not guaranteed to have correct attempts.

19



Refining the Proposal Distribution

• Utilizing verifiers to help 
refinement
• Parallel Best-of-N

• Sequential Revisions

• Combining Sequential / Parallel
• Trading off between them?

20



Refining the Proposal Distribution

• Trading off between parallel sampling 
& sequential revisions
• (Generation budget)

• Under low budget, performances 
increase with more sequential revisions.

• Under higher budgets, there is an ideal 
ratio that strikes a balance between 
them.

21



Refining the Proposal Distribution

• Trading off between parallel sampling 
& sequential revisions
• (Question difficulty)

• Easier questions attain the best 
performance with full sequential 
compute. 

• On the harder questions, there is an 
ideal ratio of sequential to parallel test-
time compute.

22



Pre-train or Inference?

• Q: How much better can the results under the inference scaling law 
be than under the pretraining scaling law? 

23



Pre-train or Inference?

• Q: How much better can the results under the inference scaling law 
be than under the pretraining scaling law? 

• In other words, if we assign the same amount of computing to 
inference and pretrain, how about the performances?

23



Pre-train or Inference?

• Experimental results

24
: model with 14x parameters



25
: model with 14x parameters

Findings

1. For easy questions or in settings with a lower inference load (𝑅 << 1), test-time compute 

can generally outperform scaling model parameters. 

2. For harder questions or in settings with a higher inference load (𝑅 >> 1), pretraining is a 

more effective way to improve performance.



Takeaways for exchanging pretrain and test-time compute

26



Takeaways for exchanging pretrain and test-time compute

• Test-time and pretraining compute are not 1-to-1 “exchangeable”. 

26



Takeaways for exchanging pretrain and test-time compute

• Test-time and pretraining compute are not 1-to-1 “exchangeable”. 

• On easy and medium questions, which are within a model’s 
capabilities, or in settings with small inference requirement, test-time 
compute can easily cover up for additional pretraining. 

26



Takeaways for exchanging pretrain and test-time compute

• Test-time and pretraining compute are not 1-to-1 “exchangeable”. 

• On easy and medium questions, which are within a model’s 
capabilities, or in settings with small inference requirement, test-time 
compute can easily cover up for additional pretraining. 

• However, on challenging questions which are outside a given base 
model’s capabilities or under higher inference requirement, 
pretraining is likely more effective for improving performance.

26



Takeaways for exchanging pretrain and test-time compute

27

Iteratively Revising Answers at Test-time Test-time Search Against a PRM Verifier



Takeaways for exchanging pretrain and test-time compute

• Some sum-up experimental results

27

Iteratively Revising Answers at Test-time Test-time Search Against a PRM Verifier



Take-home messages

• Takeaways
• For compute-optimal scaling of verifiers

28



Take-home messages

• Takeaways
• For compute-optimal scaling of verifiers

• Beam-search is more effective on harder questions and at lower compute 
budgets, whereas best-of-N is more effective on easier questions and at higher 
budgets. 

28



Take-home messages

• Takeaways
• For compute-optimal scaling of verifiers

• Beam-search is more effective on harder questions and at lower compute 
budgets, whereas best-of-N is more effective on easier questions and at higher 
budgets. 

• Moreover, by selecting the best search setting for a given question difficulty and 
test-time compute budget, we can nearly outperform best-of-N using up to 4x 
less test-time compute.

28



Take-home messages

• Takeaways
• For compute-optimal scaling by refining the proposal distribution with revisions

29



Take-home messages

• Takeaways
• For compute-optimal scaling by refining the proposal distribution with revisions

• There exists a tradeoff between sequential (e.g. revisions) and parallel (e.g. 
standard best-of-N) test-time computation, and the ideal ratio of sequential to 
parallel test-time compute depends on both the compute budget and the specific 
question at hand. 

29



Take-home messages

• Takeaways
• For compute-optimal scaling by refining the proposal distribution with revisions

• There exists a tradeoff between sequential (e.g. revisions) and parallel (e.g. 
standard best-of-N) test-time computation, and the ideal ratio of sequential to 
parallel test-time compute depends on both the compute budget and the specific 
question at hand. 

• Specifically, easier questions benefit from purely sequential test-time compute, 
whereas harder questions often perform best with some ideal ratio of sequential 
to parallel compute. 

29



Take-home messages

• Takeaways
• For compute-optimal scaling by refining the proposal distribution with revisions

• There exists a tradeoff between sequential (e.g. revisions) and parallel (e.g. 
standard best-of-N) test-time computation, and the ideal ratio of sequential to 
parallel test-time compute depends on both the compute budget and the specific 
question at hand. 

• Specifically, easier questions benefit from purely sequential test-time compute, 
whereas harder questions often perform best with some ideal ratio of sequential 
to parallel compute. 

• Moreover, by optimally selecting the best setting for a given question difficulty 
and test-time compute budget, we can outperform the parallel best-of-N 
baseline using up to 4x less test-time compute.

29



Take-home messages

30



Take-home messages

• Test-time and pretraining compute are not 1-to-1 “exchangeable”. 

30



Take-home messages

• Test-time and pretraining compute are not 1-to-1 “exchangeable”. 

• On easy and medium questions, which are within a model’s 
capabilities, or in settings with small inference requirement, test-time 
compute can easily cover up for additional pretraining. 

30



Take-home messages

• Test-time and pretraining compute are not 1-to-1 “exchangeable”. 

• On easy and medium questions, which are within a model’s 
capabilities, or in settings with small inference requirement, test-time 
compute can easily cover up for additional pretraining. 

• However, on challenging questions which are outside a given base 
model’s capabilities or under higher inference requirement, 
pretraining is likely more effective for improving performance.

30



Thanks for your listening!

• Q & A

31


	幻灯片 1
	幻灯片 2: What is Scaling Law
	幻灯片 3: What is Scaling Law
	幻灯片 4: What is Scaling Law
	幻灯片 5: What is Scaling Law
	幻灯片 6: How to scale up test-time compute?
	幻灯片 7: How to scale up test-time compute?
	幻灯片 8: How to scale up test-time compute?
	幻灯片 9: How to scale up test-time compute?
	幻灯片 10: How to scale up test-time compute?
	幻灯片 11: How to scale up test-time compute?
	幻灯片 12: How to scale up test-time compute?
	幻灯片 13: How to scale up test-time compute?
	幻灯片 14: How to scale up test-time compute?
	幻灯片 15: How to scale up test-time compute?
	幻灯片 16: How to scale up test-time compute?
	幻灯片 17: How to scale up test-time compute?
	幻灯片 18: How to scale up test-time compute?
	幻灯片 19: How to scale up test-time compute?
	幻灯片 20: How to scale up test-time compute?
	幻灯片 21: How to scale up test-time compute?
	幻灯片 22: How to scale up test-time compute?
	幻灯片 23: The scaling-up strategies for test-time
	幻灯片 24: The scaling-up strategies for test-time
	幻灯片 25: The scaling-up strategies for test-time
	幻灯片 26: Scaling Test-Time Compute via Verifiers
	幻灯片 27: Scaling Test-Time Compute via Verifiers
	幻灯片 28: Scaling Test-Time Compute via Verifiers
	幻灯片 29: Scaling Test-Time Compute via Verifiers
	幻灯片 30: Scaling Test-Time Compute via Verifiers
	幻灯片 31: Scaling Test-Time Compute via Verifiers
	幻灯片 32: Scaling Test-Time Compute via Verifiers
	幻灯片 33: Scaling Test-Time Compute via Verifiers
	幻灯片 34: Scaling Test-Time Compute via Verifiers
	幻灯片 35: Scaling Test-Time Compute via Verifiers
	幻灯片 36: Scaling Test-Time Compute via Verifiers
	幻灯片 37: Scaling Test-Time Compute via Verifiers
	幻灯片 38: Scaling Test-Time Compute via Verifiers
	幻灯片 39: Scaling Test-Time Compute via Verifiers
	幻灯片 40: Scaling Test-Time Compute via Verifiers
	幻灯片 41: Scaling Test-Time Compute via Verifiers
	幻灯片 42: Scaling Test-Time Compute via Verifiers
	幻灯片 43: Scaling Test-Time Compute via Verifiers
	幻灯片 44: Scaling Test-Time Compute via Verifiers
	幻灯片 45: Scaling Test-Time Compute via Verifiers
	幻灯片 46: Scaling Test-Time Compute via Verifiers
	幻灯片 47: Scaling Test-Time Compute via Verifiers
	幻灯片 48: Scaling Test-Time Compute via Verifiers
	幻灯片 49: Scaling Test-Time Compute via Verifiers
	幻灯片 50: Scaling Test-Time Compute via Verifiers
	幻灯片 51: Scaling Test-Time Compute via Verifiers
	幻灯片 52: Scaling Test-Time Compute via Verifiers
	幻灯片 53: Scaling Test-Time Compute via Verifiers
	幻灯片 54: Scaling Test-Time Compute via Verifiers
	幻灯片 55: Scaling Test-Time Compute via Verifiers
	幻灯片 56: Scaling Test-Time Compute via Verifiers
	幻灯片 57: Scaling Test-Time Compute via Verifiers
	幻灯片 58: Scaling Test-Time Compute via Verifiers
	幻灯片 59: Scaling Test-Time Compute via Verifiers
	幻灯片 60: Scaling Test-Time Compute via Verifiers
	幻灯片 61: Scaling Test-Time Compute via Verifiers
	幻灯片 62: Refining the Proposal Distribution
	幻灯片 63: Refining the Proposal Distribution
	幻灯片 64: Refining the Proposal Distribution
	幻灯片 65: Refining the Proposal Distribution
	幻灯片 66: Refining the Proposal Distribution
	幻灯片 67: Refining the Proposal Distribution
	幻灯片 68: Refining the Proposal Distribution
	幻灯片 69: Refining the Proposal Distribution
	幻灯片 70: Refining the Proposal Distribution
	幻灯片 71: Pre-train or Inference?
	幻灯片 72: Pre-train or Inference?
	幻灯片 73: Pre-train or Inference?
	幻灯片 74
	幻灯片 75: Takeaways for exchanging pretrain and test-time compute
	幻灯片 76: Takeaways for exchanging pretrain and test-time compute
	幻灯片 77: Takeaways for exchanging pretrain and test-time compute
	幻灯片 78: Takeaways for exchanging pretrain and test-time compute
	幻灯片 79: Takeaways for exchanging pretrain and test-time compute
	幻灯片 80: Takeaways for exchanging pretrain and test-time compute
	幻灯片 81: Take-home messages
	幻灯片 82: Take-home messages
	幻灯片 83: Take-home messages
	幻灯片 84: Take-home messages
	幻灯片 85: Take-home messages
	幻灯片 86: Take-home messages
	幻灯片 87: Take-home messages
	幻灯片 88: Take-home messages
	幻灯片 89: Take-home messages
	幻灯片 90: Take-home messages
	幻灯片 91: Take-home messages
	幻灯片 92: Thanks for your listening!

