Scaling LLM Test-Time Compute Optimally can be
More Effective than Scaling Model Parameters
[arXiv 24.08]

TL; DR.
Explores two main strategies (PRM & Refining the Proposal Distribution)

for scaling LLM reasoning at test-time.

Presented by:
Jiaxi Li

Our large-scale reinforcement learning algorithm teaches the model how to think
W h : S I M L productively using its chain of thought in a highly data-efficient training process. We have
at I S C a I n g aw found that the performance of o1 consistently improves with more reinforcement learning

(train-time compute) and with more time spent thinking (test-time compute). The

constraints on scaling this approach differ substantially from those of LLM pretraining, and
we are continuing to investigate them.

* For training OpenAl ol

* Scaling Law for both train-time
° o1 AIME accurac o1 AIME accurac
and test-tlme. duringtrainingy at test time g

pass@1accuracy

-
O
E
=
Q
O
o

Gl
0
0y
o
o

train-time compute (log scale) test-time compute {ltlg scale)

ol performance smoothly improves with both train-time and test-time compute

[I] OpenAl “Learning to Reason with LLMs”. 2024.09

Our large-scale reinforcement learning algorithm teaches the model how to think
W h : S I M L productively using its chain of thought in a highly data-efficient training process. We have
at I S C a I n g aw found that the performance of o1 consistently improves with more reinforcement learning

(train-time compute) and with more time spent thinking (test-time compute). The

constraints on scaling this approach differ substantially from those of LLM pretraining, and
we are continuing to investigate them.

* For training OpenAl ol

* Scaling Law for both train-time
° o1 AIME accurac o1 AIME accurac
and test-tlme. duringtrainingy at test time g

e Question

-
O
E
=
Q
O
o

Gl
0
0y
o
o

pass@1accuracy

train-time compute (log scale) test-time compute {ltlg scale)

ol performance smoothly improves with both train-time and test-time compute

[I] OpenAl “Learning to Reason with LLMs”. 2024.09

Our large-scale reinforcement learning algorithm teaches the model how to think
W h : S I M L productively using its chain of thought in a highly data-efficient training process. We have
at I S C a I n g aw found that the performance of o1 consistently improves with more reinforcement learning

(train-time compute) and with more time spent thinking (test-time compute). The

constraints on scaling this approach differ substantially from those of LLM pretraining, and
we are continuing to investigate them.

* For training OpenAl ol

* Scaling Law for both train-time
° o1 AIME accurac o1 AIME accurac
and test-tlme. duringtrainingy at test time g

e Question

* What do they mean by “test-
time compute™?
And how to scale up “test-time
compute’?

pass@1accuracy

-
O
E
=
Q
O
o

Gl
0
0y
o
o

train-time compute (log scale) test-time compute {ltlg scale)

ol performance smoothly improves with both train-time and test-time compute

[I] OpenAl “Learning to Reason with LLMs”. 2024.09

Our large-scale reinforcement learning algorithm teaches the model how to think
W h : S I M L productively using its chain of thought in a highly data-efficient training process. We have
at I S C a I n g aw found that the performance of o1 consistently improves with more reinforcement learning

(train-time compute) and with more time spent thinking (test-time compute). The

constraints on scaling this approach differ substantially from those of LLM pretraining, and
we are continuing to investigate them.

* For training OpenAl ol

* Scaling Law for both train-time
° o1 AIME accurac o1 AIME accurac
and test-tlme. duringtrainingy at test time g

e Question

* What do they mean by “test-
time compute™?
And how to scale up “test-time
compute’?

pass@1accuracy

-
O
E
=
Q
O
o

Gl
0
0y
o
o

* A shift from “system-1" to
“System-z” reason i ng. train-time compute (log scale) test-time compute (log scale)

ol performance smoothly improves with both train-time and test-time compute

[I] OpenAl “Learning to Reason with LLMs”. 2024.09

How to scale up test-time compute?

* For optimizing input (prompting)

How to scale up test-time compute?

* For optimizing input (prompting)
* Basic prompting techniques

How to scale up test-time compute?

* For optimizing input (prompting)
* Basic prompting techniques
* Few-shot prompting

How to scale up test-time compute?

* For optimizing input (prompting)
* Basic prompting techniques
* Few-shot prompting
* CoT prompting

How to scale up test-time compute?

* For optimizing input (prompting)
* Basic prompting techniques
* Few-shot prompting
* CoT prompting
* Learning to prompt (using neural networks)

How to scale up test-time compute?

* For optimizing input (prompting)
* Basic prompting techniques
* Few-shot prompting
* CoT prompting
* Learning to prompt (using neural networks)
* RLPrompt!]

How to scale up test-time compute?

* For optimizing input (prompting)
* Basic prompting techniques
* Few-shot prompting
* CoT prompting
* Learning to prompt (using neural networks)
* RLPrompt!]
. DSPy83]

How to scale up test-time compute?

* For optimizing input (prompting)
* Basic prompting techniques
* Few-shot prompting
* CoT prompting
* Learning to prompt (using neural networks)
* RLPrompt!]
- DSPy[3!
* Already built into python packages and widely used

How to scale up test-time compute?

* For optimizing input (prompting)
* Basic prompting techniques
* Few-shot prompting
* CoT prompting
* Learning to prompt (using neural networks)
* RLPrompt!]
- DSPy[3!
* Already built into python packages and widely used

[2] Deng et al.,“RLPrompt: Optimizing Discrete Text Prompts with Reinforcement Learning” EMNLP 2022

How to scale up test-time compute?

* For optimizing input (prompting)
* Basic prompting techniques
* Few-shot prompting
* CoT prompting
* Learning to prompt (using neural networks)
* RLPrompt!]
- DSPy[3!
* Already built into python packages and widely used

[2] Deng et al.,“RLPrompt: Optimizing Discrete Text Prompts with Reinforcement Learning” EMNLP 2022
[3] Khattab et al.,“DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines” RO-FoMo@NeurIPS 2023

How to scale up test-time compute?

* For optimizing input (prompting)
* Basic prompting techniques
* Few-shot prompting
* CoT prompting
* Learning to prompt (using neural networks)
* RLPrompt!]
- DSPy[3!
* Already built into python packages and widely used

* And many other techniques for optimizing prompts...

[2] Deng et al.,“RLPrompt: Optimizing Discrete Text Prompts with Reinforcement Learning” EMNLP 2022
[3] Khattab et al.,“DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines” RO-FoMo@NeurIPS 2023

How to scale up test-time compute?

* For refining output distribution

* How to let LLMs generate better CoT rationales!?
* SFT works.
* SFT with collected CoT rationales can let LLM generate better reasoning traces.

How to scale up test-time compute?

* For refining output distribution

* How to let LLMs generate better CoT rationales!?
* SFT works.
* SFT with collected CoT rationales can let LLM generate better reasoning traces.

* Take a step further, how to let LLM keep revising its CoT rationales and
gradually approach a more reasonable answer?

How to scale up test-time compute?

* For refining output distribution

* How to let LLMs generate better CoT rationales!?
* SFT works.
* SFT with collected CoT rationales can let LLM generate better reasoning traces.
* Take a step further, how to let LLM keep revising its CoT rationales and
gradually approach a more reasonable answer?
* Tree-of-Thought

How to scale up test-time compute?

* For refining output distribution

* How to let LLMs generate better CoT rationales!?
* SFT works.
* SFT with collected CoT rationales can let LLM generate better reasoning traces.
* Take a step further, how to let LLM keep revising its CoT rationales and
gradually approach a more reasonable answer?
* Tree-of-Thought
* Monte-Carlo Tree Search

How to scale up test-time compute?

* For refining output distribution

* How to let LLMs generate better CoT rationales!?
* SFT works.
* SFT with collected CoT rationales can let LLM generate better reasoning traces.
* Take a step further, how to let LLM keep revising its CoT rationales and
gradually approach a more reasonable answer?
* Tree-of-Thought
* Monte-Carlo Tree Search

How to scale up test-time compute?

* For refining output distribution

* How to let LLMs generate better CoT rationales!?
* SFT works.
* SFT with collected CoT rationales can let LLM generate better reasoning traces.
* Take a step further, how to let LLM keep revising its CoT rationales and
gradually approach a more reasonable answer?
* Tree-of-Thought
* Monte-Carlo Tree Search

* Both of them contribute to training a verifier to help refine the output
distribution at test-time.

The scaling-up strategies for test-time

* Scaling Test-Time Compute via Verifiers
* Training verifiers to search
* Search Methods Against a verifier

* Refining the Proposal Distribution
* Parallel Sampling v.s. Sequential Revisions
* Trading off between them

The scaling-up strategies for test-time

* Scaling Test-Time Compute via Verifiers
* Training verifiers to search
* Search Methods Against a verifier

* Refining the Proposal Distribution
* Parallel Sampling v.s. Sequential Revisions
* Trading off between them

* [Q] Aren’t they talking about test-time? Why are they still training?

The scaling-up strategies for test-time

* Scaling Test-Time Compute via Verifiers
* Training verifiers to search
* Search Methods Against a verifier

* Refining the Proposal Distribution
* Parallel Sampling v.s. Sequential Revisions
* Trading off between them

* [Q] Aren’t they talking about test-time? Why are they still training?

* To scale up compute at test-time,
we cannot do it without post-training.

Scaling Test-Time Compute via Verifiers

 So what are verifiers? o

l

A CoT rationale

Scaling Test-Time Compute via Verifiers

* So what are verifiers?
* ORM: Outcome-supervised Reward Model @

A CoT rationale

Scaling Test-Time Compute via Verifiers
* So what are verifiers!?
* ORM: Outcome-supervised Reward Model @

£

A CoT rationale

Scaling Test-Time Compute via Verifiers

* So what are verifiers?
* ORM: Outcome-supervised Reward Model @

ORM <= Output + Label [@]

A CoT rationale

Scaling Test-Time Compute via Verifiers
* So what are verifiers!?
* ORM: Outcome-supervised Reward Model @
* PRM: Process-supervised Reward Model

ORM <= Output + Label [@]

A CoT rationale

Scaling Test-Time Compute via Verifiers

* So what are verifiers!?
* ORM: Outcome-supervised Reward Model @
* PRM: Process-supervised Reward Model
]
PRM <= Output + Label + supervision of rationales !

ORM <= Output + Label [@]

A CoT rationale

Scaling Test-Time Compute via Verifiers

* So what are verifiers!?
* ORM: Outcome-supervised Reward Model @
* PRM: Process-supervised Reward Model
4)
]
PRM <= Output + Label + supervision of rationales !
g J

ORM <= Output + Label [@]

A CoT rationale

Scaling Test-Time Compute via Verifiers

e So what are verifiers!?
* ORM: Outcome-supervised Reward Model @

* PRM: Process-supervised Reward Model

— 4 R
Next question: How to train a PRM? :

PRM <= Output + Label + supervision of rationales !

ORM <= Output + Label [@]

A CoT rationale

Scaling Test-Time Compute via Verifiers

* How to train a PRM?
(We only discuss the case that you cannot afford the annotations by human. @4)

Scaling Test-Time Compute via Verifiers

e How to train a PRM?

(We only discuss the case that you cannot afford the annotations by human. @4)
* Instead of directly annotating each reasoning step, we estimate the quality of them.

Scaling Test-Time Compute via Verifiers

e How to train a PRM?

(We only discuss the case that you cannot afford the annotations by human. @4)
* Instead of directly annotating each reasoning step, we estimate the quality of them.

 The quality of a reasoning step is defined as its potential to deduce the correct answer.[]
(Just like a soft label)

Scaling Test-Time Compute via Verifiers

* How to train a PRM?
(We only discuss the case that you cannot afford the annotations by human. @4)
* Instead of directly annotating each reasoning step, we estimate the quality of them.

 The quality of a reasoning step is defined as its potential to deduce the correct answer.[]
(Just like a soft label)

[4] Wang et al.,“Math-Shepherd:Verify and Reinforce LLMs Step-by-step without Human Annotations” arXiv 24.02

Scaling Test-Time Compute via Verifiers

e How to train a PRM?

(We only discuss the case that you cannot afford the annotations by human. @4)
* Instead of directly annotating each reasoning step, we estimate the quality of them.

 The quality of a reasoning step is defined as its potential to deduce the correct answer.[]
(Just like a soft label)

Problem: Let p(x) be a monic polynomial of degree 4. Three] [Golden Answer: 24

| of the roots of p(x)are 1, 2, and 3. Find p(0) + p(4).

Solution: § = 84,55, 83,"*", Sk H Answer: 20 X I (a) Outcome Annotation: yg = 0

o y
' ™)]
Problem: » Sz10* S31 > —» Sg,1[* Answer:24 v
S4: Since three of the |
s
roots of pyx)are 1, 2, and P Szz[* Szz[™ * Skg,2 [® Answer: 24 v
3, we can write : p(x) = \ h ‘
. . .) . h
L (x-1)(x-2)(x-3)(x-r). . M Sy ¥ Sz > —* Skg,3[* Answer:20 X
b): Process Annotation: Y55 = 5 ; yi5 = 1
(b): Process Annotation: y;’= 3 Ys, =

e -
i B

s;: the £th step of the solution §. §;;: the /th step of the j-th finalized solution.

L A

[4] Wang et al.,“Math-Shepherd:Verify and Reinforce LLMs Step-by-step without Human Annotations” arXiv 24.02

Scaling Test-Time Compute via Verifiers

* How to score with the verifier (Answer aggregation)

Scaling Test-Time Compute via Verifiers

* How to score with the verifier (Answer aggregation)

* To select the best-of-N answers with the PRM, we need to aggregate across all the
per-step scores for each answer to determine the best candidate.

Scaling Test-Time Compute via Verifiers

* How to score with the verifier (Answer aggregation)

* To select the best-of-N answers with the PRM, we need to aggregate across all the
per-step scores for each answer to determine the best candidate.

* Step-wise aggregation (inside-answer)

Scaling Test-Time Compute via Verifiers

* How to score with the verifier (Answer aggregation)
* To select the best-of-N answers with the PRM, we need to aggregate across all the
per-step scores for each answer to determine the best candidate.
* Step-wise aggregation (inside-answer)
* Inter-answer aggregation (between-answer)

Scaling Test-Time Compute via Verifiers

* How to score with the verifier (Answer aggregation) Input

!

A CoT rationale

[5] Lightman et al. (OpenAl),“Let’s verify step by step” ICLR 2024

Scaling Test-Time Compute via Verifiers

* How to score with the verifier (Answer aggregation) Input
* Step-wise aggregation

l

A CoT rationale

[5] Lightman et al. (OpenAl),“Let’s verify step by step” ICLR 2024

Scaling Test-Time Compute via Verifiers

* How to score with the verifier (Answer aggregation) Input
* Step-wise aggregation
* (How to calculate the score for a single answer?)

Output

O

A CoT rationale
[5] Lightman et al. (OpenAl),“Let’s verify step by step” ICLR 2024

Scaling Test-Time Compute via Verifiers

* How to score with the verifier (Answer aggregation) @
* Step-wise aggregation

* (How to calculate the score for a single answer?)

« Some work[*IP] aggregating the per-step scores by taking the
product or minimum

A CoT rationale

[5] Lightman et al. (OpenAl),“Let’s verify step by step” ICLR 2024

Scaling Test-Time Compute via Verifiers

* How to score with the verifier (Answer aggregation) @
* Step-wise aggregation

* (How to calculate the score for a single answer?)
« Some work[*IP] aggregating the per-step scores by taking the |

product or minimum
* This paper finds that using the score of the last step performs best l

with their PRM. |

A CoT rationale

[5] Lightman et al. (OpenAl),“Let’s verify step by step” ICLR 2024

Scaling Test-Time Compute via Verifiers

* How to score with the verifier (Answer aggregation)
* Step-wise aggregation
* (How to calculate the score for a single answer?)

« Some work[*IP] aggregating the per-step scores by taking the
product or minimum

* This paper finds that using the score of the last step performs best
with their PRM.

* Inter-answer aggregation

[5] Lightman et al. (OpenAl),“Let’s verify step by step” ICLR 2024

A CoT rationale

Scaling Test-Time Compute via Verifiers

* How to score with the verifier (Answer aggregation) Input
* Step-wise aggregation
* (How to calculate the score for a single answer?)

« Some work[*IP] aggregating the per-step scores by taking the
product or minimum

* This paper finds that using the score of the last step performs best I
with their PRM. l

* Inter-answer aggregation

* (How to choose the best answer candidate)
A CoT rationale

[5] Lightman et al. (OpenAl),“Let’s verify step by step” ICLR 2024

Scaling Test-Time Compute via Verifiers

* How to score with the verifier (Answer aggregation)
* Step-wise aggregation
* (How to calculate the score for a single answer?)

« Some work[*IP] aggregating the per-step scores by taking the
product or minimum

* This paper finds that using the score of the last step performs best
with their PRM.

* Inter-answer aggregation
* (How to choose the best answer candidate)

* Marginalizing scores across all solutions with the same final answer.
(“weighted aggregation”)

[5] Lightman et al. (OpenAl),“Let’s verify step by step” ICLR 2024

Input

A CoT rationale

Scaling Test-Time Compute via Verifiers

* Search Methods Against a verifier

Best-of-N Beam Search Lookahead Search
——————— =
_______ I g - - - = ' Beam caaroh, but at sach ciep |
I Generate N full colutiont Fmi=ot the bop-4 campies 1 rolicut k-cieps In advanoe, using
salsoting the bact one with the I I at saoh ctep using the I 2;:";:;,?:,::1::—:;:,?;:‘;‘& I
&ﬁ!ﬁﬂﬂ I varinar l L FEm 1 Question I the ourrent ctep]
_____ . |
L4 1
\ 7 N
oy o
\ \ e
Fa R | beck fo
1 k-cleps wiep
- - A
(| | (
I | I |
- — - -
Continue Search from
the top-N optiong
- -~ -~
- - —
< 4 L3
Select the best final answer using the verifier Select the best final answer using the verifier " nmoam e naaes [P e aa ey
Key: r - _I
I] = Apply Verifier = Full Solution = Intermediate solution step = Selected by verifier = Rejected by verifier

o

Scaling Test-Time Compute via Verifiers

Best-of-N
* Search Methods Against a verifier - = == == -

selecting the best one with the

* (weighted) Best-of-N e

* Just sample N answers independently
from the base LLM

* Select the candidate according to the
PRM’s answer aggregation calculation.

Select the best final answer using the verifier

Scaling Test-Time Compute via Verifiers

Beam Search

* Search Methods Against a verifier roo T
 Beam Search L

e Control a total number N and a beam
width M (N=4, M=2) (> (2= (SO g
* Similar to the to the LM decoding strategy ' _™_ > D
“beam search” (Difference that each node (= fé‘n r{r/- -
I |

denotes the intermediate reasoning step 1 (1 |

here.) T o T T
(A > | (fg_l
l | | l l l | l

Select the best final answer using the verifier 12

Scaling Test-Time Compute via Verifiers

Lookahead Search

* Search Methods Against a verifier oy s |
* Lookahead Search L 'L o
° Based on beam Search’ it modiﬁes hOW to T gy AN e e aeaes _

evaluate each step.

* Rollout k steps and having the score at the o
k-th step as the score of current reasoning Y
rationale. f | Ir

* (Main idea is just like A* / Monte-Carlo
Tree Search)

Continue Search from
the top-N options

Scaling Test-Time Compute via Verifiers

* Experimental setup
* Two main factors affecting the performances
* Generation budget
* e.g. Number of sampling

* Difficulty of question

* Easy questions may do not require much reasoning, while hard questions need much
reasoning.

Scaling Test-Time Compute via Verifiers

* Results & Findings

* When bUdget IS Sma”, Comparing PRM Search Methods
beam search > best-of-N > lookahead 4

* When budget is large,
best-of-N > beam search > lookahead

\

[#5]
=]

== Best-of-N Weighted
== Majority

== Beam: M := sqri{N)
wf= Beam; M =4

MATH Test Accuracy (%)
S &

15 == 1 Step Lookahead; M := sgrt{N})
== 3 Step Lookahead; M = sgrt{N)
3 Step Lookahead; M := 4
10

2' 2 2° 2" 2

Generation Budget

Scaling Test-Time Compute via Verifiers

* Results & Findings

* When bUdget IS Sma”, Comparing PRM Search Methods
beam search > best-of-N > lookahead

* When budget is large,
best-of-N > beam search > lookahead

=Y
[

55 /
S

[#5]
=]

* Possible explanations

== Best-of-N Weighted

MATH Test Accuracy (%)
]
(%2}

20 == Majority
== Beam: M := sqri{N)
wf= Beam; M =4
15 == 1 Step Lookahead; M := sgrt{N})
== 3 Step Lookahead; M = sgrt{N)
3 Step Lookahead; M := 4
10

2' 2 2° 2" 2

Generation Budget

Scaling Test-Time Compute via Verifiers

* Results & Findings

* When bUdget IS Sma”, Comparing PRM Search Methods
beam search > best-of-N > lookahead

* When budget is large,
best-of-N > beam search > lookahead

=Y
[

35 /
S

[#5]
=]

* Possible explanations

* When budget is small, we need more
sophisticated searching strategy (simply
sampling may be hard to hit).

Best-of-N Weighted
== Majority

== Beam: M := sqri{N)
s Beam; M =4
== 1 Step Lookahead; M := sgrt{N})
== 3 Step Lookahead; M = sgrt{N)
3 Step Lookahead; M := 4

MATH Test Accuracy (%)
S &

-
o

-y
=

2' 2 2° 2" 2

Generation Budget

Scaling Test-Time Compute via Verifiers

* Results & Findings

* When bUdget IS Sma”, Comparing PRM Search Methods
beam search > best-of-N > lookahead

* When budget is large,
best-of-N > beam search > lookahead

=Y
[

35 /
—

[#5]
=]

* Possible explanations

* When budget is small, we need more
sophisticated searching strategy (simply
sampling may be hard to hit).

* When budget is large, it will alleviate this |
problem. S 3 5) 2

Generation Budget

Best-of-N Weighted
== Majority

== Beam: M := sqri{N)
s Beam; M =4
== 1 Step Lookahead; M := sgrt{N})
== 3 Step Lookahead; M = sgrt{N)
3 Step Lookahead; M := 4

MATH Test Accuracy (%)
S &

-
o

-y
=

Scaling Test-Time Compute via Verifiers
* Results & Findings

* When bUdget IS Sma”, Comparing PRM Search Methods
beam search > best-of-N > lookahead

* When budget is large,
best-of-N > beam search > lookahead

=Y
[

35 /
—

[#5]
=]

* Possible explanations

* When budget is small, we need more
sophisticated searching strategy (simply
sampling may be hard to hit).

== 3 Step Lockahead; M := sqrt{N)

* When budget is large, it will alleviate this o e s
problem. S 3 5) 2

Generation Budget

Best-of-N Weighted
== Majority

== Beam: M := sqri{N)
s Beam; M =4
== 1 Step Lookahead; M := sgrt{N})

MATH Test Accuracy (%)
S &

-
o

-y
=

* Lookahead search generally underperforms,
probably due to over-optimizing for searching.

Scaling Test-Time Compute via Verifiers

* Results & Findings

(FOUI" Bars under each b|n demotes the Comparing Beam Search and Best-of-N by Difficulty Level
searching budget: 4, 16, 64,256) e —

Best-of-N Weighted
* On simplest questions (1, 2),

I Majority
best-of-N > beam search I
| l
iI
II I|II
I.II .

e On hard questions (3, 4),
Test Questions Binned by Increasing Difficulty Level

o
=]

(s3]
o

beam search > best-of-N

* On the hardest questions (5),
nothing works

MATH Test Accuracy (%)
I
o

B
L]

=

Refining the Proposal Distribution

If $f(x) = Wrac{3x-2H{x-2}3, what is the value of $f(-2) +f(-1)+f(0)$? Express your answer as a
common fraction.

Attempt 1:

* LLMs can learn to generate

wWe have $f(-2)=\frac{3(-2)-2}{-2-2}=-\frac{a}{-4}="frac{1}{1}=1%.
So $F(-2)=1%.

better rationales via SFT with

We have &f(-1)=\frac{3(-1)-2}{-1-2}=-\frac{5}{-3}=\frac{5}{3}%.
So $F(-1)=M\frac{5}{3}%.

nigh-quality data.

We have ST(0)=\frac{3(e)-2}{0-2}=\frac{-2}{-2}=1%.
So $f(0)=1%.

S We W t t . te
o After that’ We Can Iet LLMS 52+\?ra225}{;}:;Tslrjr:c{a}{3}+\rrac{E}{B}—\rrac{3+5}{3}—\rrac{8}{3}$.
So the answer is $\boxed{\frac{8}{3}}%.
M M #### \frac{8}{3}
refine their proposal
. . . Attempt 2:
dlStrlbutlonS. Let's first find $F(-2)%.

§F(-2) = \frac{3(-2)-23{-2-2} = \frac{-6-2}{-4} = “\frac{-8}{-4} = 2%.
. . Now let's find $T(-1)%.
$F(-1) = \frac{3(-1)-2}{-1-2} = \frac{-3-2}{-3} = \frac{-5}{-3} = \frac{5}{3}s.
* Primarily there are two U e e e e e - e ()
o o o $F(0) = \frac{3(e)-2}{6-2} = \frac{-2}{-2} = 1%.
So we have $Ff(-2) +f(-1)+f(8) = 2+\frac{5}{3}+1 =
Strategles for reflnlng Output \?raz{;;::;}+\frac{;};:3;+\l.1':’ac{3}{3} :H\frac{?l5+3}{3} = Afrac{15}{3} = 5%.

So the answer is $\boxed{5}%.

distribution w o

Attempt 3:

.
o Para”el Sampllng Let's plug in $-2%, $-1%, and $6% for x in $F(x)$.

We get $f(-2) = “frac{23(-2)-23{-2-2} = “frac{-8%{-4} = “frac{2}{1} = 2, f(-1) =

* Sequential revisions fractsrioy < aa.] 7 \frac(-SHea) = Mracta}), 1(0) = Mracla(@)-2(e-a) -
So we have $2+\frac{5}{3}+1=\Trac{6}{3}+\frac{5}{3}+ \frac{3}{3}=\Trac{14}{3}%.
So the answer is $\bhoxed{\frac{14}{3}}%. |7
#a## Nfrac{14} {3}

Refining the Proposal Distribution

* Two major methods for refining the proposal distribution
* Parallel Sampling v.s. Sequential Revisions
* (global search v.s. local refinement)

Parallel Sampling Sequential Revisions
(_ b LM proposes a sequence of revisions, each
\ A:So 7/4 yap/dap ... conditioned on previous revisions
Sépg,tgzp; =7 ‘ \ LM proposes answers Q: Ifddaps=7
vaps=3baps, —» LM A: We have 4 dap. .. independently, in yaps, and &
how many daps L i J | parallel yaps=3baps, —» LM A:We ... A:So ... A lf7/4 ...
equal 42 baps? how many daps
p equal 42 baps?
A:If 7/4 yaps/dap ...
A

J

Refining the Proposal Distribution

* However, there are many problems

Refining the Proposal Distribution

* However, there are many problems
* Eg.

Refining the Proposal Distribution

* However, there are many problems
* Eg.
* For sequential revision, the last attempt is not guaranteed to be correct.

(There is case that it is revised correctly in the middle, and then revised
incorrectly at last.)

Refining the Proposal Distribution

* However, there are many problems
* Eg.
* For sequential revision, the last attempt is not guaranteed to be correct.

(There is case that it is revised correctly in the middle, and then revised
incorrectly at last.)

* For both of them, it’s not guaranteed to have correct attempts.

Refining the Proposal Distribution

* Utilizing verifiers to help
refinement

e Parallel Best-of-N
* Sequential Revisions

* Combining Sequential / Parallel

* Trading off between them?

Key:

Using Revision Model + Verifier at (~~
Inference Time

I
I | = Apply Verifier = Selected by verifier

- —

= Rejected by verifier

Parallel Best-of-N

-

-
®,

o

.

Verifier
selects
the best
answer

Sequential Revisions
Verifier selects

the best answer

(|
Question \.||.|I.II.II.II

(1 (a1 (
B TR TEY HERA

. M B j— Verifier

[I
: , selects the

Verifier selects the best o best answer

EIEETE answer within each chain :r. : across chains
V. 7. V. | 4

(_-l r _-I f _'I I’ _-I s

@, ©®,. 0, O, .

[— - -+ e o - -

~
-~ -

e -

20

Refining the Proposal Distribution

* Trading off between parallel sampling
& sequential revisions
* (Generation budget)

* Under low budget, performances
increase with more sequential revisions.

* Under higher budgets, there is an ideal
ratio that strikes a balance between
them.

MATH Test Accuracy (%)

45

40

35

30

25

20

15

2—?

Varying Sequential/Parallel with Verifier

57"

I R, 2

Sequential/Parallel Ratio

5
2

2?

21

Number of Generations

Refining the Proposal Distribution

* Trading off between parallel sampling
& sequential revisions
* (Question difficulty)

* Easier questions attain the best
performance with full sequential
compute.

* On the harder questions, there is an
ideal ratio of sequential to parallel test-
time compute.

Revisions@128, Varying the Sequential to Parallel Ratio

1 2 3 4 &

Test Questions Binned by Increasing Difficulty Level

& [=2] o
[=] =] =]

MATH Test Accuracy (%)

]
=]

22

—_

10”

Sequential to Parallel Ratio

Pre-train or Inference!?

* Q: How much better can the results under the inference scaling law
be than under the pretraining scaling law?

Pre-train or Inference!?

* Q: How much better can the results under the inference scaling law
be than under the pretraining scaling law?

* In other words, if we assign the same amount of computing to
inference and pretrain, how about the performances!?

Pre-train or Inference!?

* Experimental results

Comparing Test-time and Pretraining Compute

Revisions PRM Search

< 100 | i -

9 5 80

© 80 ®

-] -

3 3]

< < 60

o 60 D

> >

Q)]

. > 40

> >

5 40 =

O O

= =

(] 0O 920

z ® z

<C <C

= =

Proportional to Inference FLOPs Proportional to Inference FLOPs
R = Dinference

: model with |4x parameters * Prefraining Compute ~ e@m Test-time Compute ~ ==+ R>>1 == R~=1 ==- R<<1 Dopretrain

Difficulty Level

Findings

|. For easy questions or in settings with a lower inference load (R << |), test-time compute
can generally outperform scaling model parameters.

2. For harder questions or in settings with a higher inference load (R >> 1), pretraining is a
more effective way to improve performance.

Comparing Test-time and Pretraining Compute

Revisions PRM Search

< 100 | | 3

5 g 80

© 80 ©

= -]

3 8

< < 60

© 60 ©

> >

(M) [0}

> > 40

= >

5 40 =

O O

= =

O 0O 920

£ ° z

< <

= =

Proportional to Inference FLOPs Proportional to Inference FLOPs
R = Dinference

: model with |4x parameters * Prefraining Compute ~ @@ Test-ime Compute ~ ==+ R>>1 ==- R~=1 ==- R<<1 Dpretrain

Difficulty Level

Takeaways for exchanging pretrain and test-time compute

Takeaways for exchanging pretrain and test-time compute

* Test-time and pretraining compute are not |-to-| “exchangeable”.

Takeaways for exchanging pretrain and test-time compute

* Test-time and pretraining compute are not |-to-| “exchangeable”.

* On easy and medium questions, which are within a model’s
capabilities, or in settings with small inference requirement, test-time
compute can easily cover up for additional pretraining.

26

Takeaways for exchanging pretrain and test-time compute

* Test-time and pretraining compute are not |-to-| “exchangeable”.

* On easy and medium questions, which are within a model’s
capabilities, or in settings with small inference requirement, test-time
compute can easily cover up for additional pretraining.

* However, on challenging questions which are outside a given base
model’s capabilities or under higher inference requirement,
pretraining is likely more effective for improving performance.

26

Relative Improvement in Accuracy
From Test-time Compute (%)

Takeaways for exchanging pretrain and test-time compute

Iteratively Revising Answers at Test-time Test-time Search Against a PRM Verifier

Comparing Test-time and Pretraining Compute
in a FLOPs Matched Evauation Comparing Test-time and Pretraining Compute
in a FLOPs Matched Evauation

30
20 +19.1%
20 +16.7% 5
iy
5
10 3 [0}
<5
£ a
0 = E
R &)
£ o
=10 > E
eF
0_4—'
£ 0
=20 —
=
; £9
~30 ® Easy Questions % L @ Easy Questions
® Medium Questions [0'd 0 ® Medium Questions
@ Hard Questions -5 ® Hard Questions
=40
<< ~=1 >>1 <<1 ~=1 >>1

Ratio of Inference Tokens to Pretraining Tokens Ratio of Inference Tokens to Pretraining Tokens 27

Relative Improvement in Accuracy
From Test-time Compute (%)

Takeaways for exchanging pretrain and test-time compute

* Some sum-up experimental results

Iteratively Revising Answers at Test-time Test-time Search Against a PRM Verifier

Comparing Test-time and Pretraining Compute
in a FLOPs Matched Evauation Comparing Test-time and Pretraining Compute
in a FLOPs Matched Evauation

[4%]
[=]

20 +19.1%

)
o

+16.7%

o

o

=10

Relative Improvement in Accuracy
From Test-time Compute (%)

30 ® Easy Questions @ Easy Questions
® Medium Questions ® Medium Questions
@ Hard Questions —50 @® Hard Questions
=40
<< ~=1 >>1 <<1 ~=1 >>1

Ratio of Inference Tokens to Pretraining Tokens Ratio of Inference Tokens to Pretraining Tokens 27

Take-home messages

* Takeaways
* For compute-optimal scaling of verifiers

Take-home messages

* Takeaways
* For compute-optimal scaling of verifiers

* Beam-search is more effective on harder questions and at lower compute
budgets, whereas best-of-N is more effective on easier questions and at higher
budgets.

28

Take-home messages

* Takeaways
* For compute-optimal scaling of verifiers

* Beam-search is more effective on harder questions and at lower compute
budgets, whereas best-of-N is more effective on easier questions and at higher
budgets.

* Moreover, by selecting the best search setting for a given question difficulty and
test-time compute budget, we can nearly outperform best-of-N using up to

28

Take-home messages

* Takeaways
* For compute-optimal scaling by refining the proposal distribution with revisions

Take-home messages

* Takeaways
* For compute-optimal scaling by refining the proposal distribution with revisions

* There exists a tradeoff between sequential (e.g. revisions) and parallel (e.g.
standard best-of-N) test-time computation, and the ideal ratio of sequential to
parallel test-time compute depends on both the compute budget and the specific
question at hand.

Take-home messages

* Takeaways
* For compute-optimal scaling by refining the proposal distribution with revisions
* There exists a tradeoff between sequential (e.g. revisions) and parallel (e.g.

standard best-of-N) test-time computation, and the ideal ratio of sequential to
parallel test-time compute depends on both the compute budget and the specific

question at hand.

* Specifically, easier questions benefit from purely sequential test-time compute,
whereas harder questions often perform best with some ideal ratio of sequential

to parallel compute.

Take-home messages

* Takeaways
* For compute-optimal scaling by refining the proposal distribution with revisions

* There exists a tradeoff between sequential (e.g. revisions) and parallel (e.g.
standard best-of-N) test-time computation, and the ideal ratio of sequential to
parallel test-time compute depends on both the compute budget and the specific
question at hand.

* Specifically, easier questions benefit from purely sequential test-time compute,
whereas harder questions often perform best with some ideal ratio of sequential
to parallel compute.

* Moreover, by optimally selecting the best setting for a given question difficulty
and test-time compute budget, we can outperform the parallel best-of-N
baseline using up to

Take-home messages

Take-home messages

* Test-time and pretraining compute are not |-to-| “exchangeable”.

Take-home messages

* Test-time and pretraining compute are not |-to-| “exchangeable”.

* On easy and medium questions, which are within a model’s
capabilities, or in settings with small inference requirement, test-time
compute can easily cover up for additional pretraining.

30

Take-home messages

* Test-time and pretraining compute are not |-to-| “exchangeable”.

* On easy and medium questions, which are within a model’s
capabilities, or in settings with small inference requirement, test-time
compute can easily cover up for additional pretraining.

* However, on challenging questions which are outside a given base
model’s capabilities or under higher inference requirement,
pretraining is likely more effective for improving performance.

30

Thanks for your listening!

* Q &A

	幻灯片 1
	幻灯片 2: What is Scaling Law
	幻灯片 3: What is Scaling Law
	幻灯片 4: What is Scaling Law
	幻灯片 5: What is Scaling Law
	幻灯片 6: How to scale up test-time compute?
	幻灯片 7: How to scale up test-time compute?
	幻灯片 8: How to scale up test-time compute?
	幻灯片 9: How to scale up test-time compute?
	幻灯片 10: How to scale up test-time compute?
	幻灯片 11: How to scale up test-time compute?
	幻灯片 12: How to scale up test-time compute?
	幻灯片 13: How to scale up test-time compute?
	幻灯片 14: How to scale up test-time compute?
	幻灯片 15: How to scale up test-time compute?
	幻灯片 16: How to scale up test-time compute?
	幻灯片 17: How to scale up test-time compute?
	幻灯片 18: How to scale up test-time compute?
	幻灯片 19: How to scale up test-time compute?
	幻灯片 20: How to scale up test-time compute?
	幻灯片 21: How to scale up test-time compute?
	幻灯片 22: How to scale up test-time compute?
	幻灯片 23: The scaling-up strategies for test-time
	幻灯片 24: The scaling-up strategies for test-time
	幻灯片 25: The scaling-up strategies for test-time
	幻灯片 26: Scaling Test-Time Compute via Verifiers
	幻灯片 27: Scaling Test-Time Compute via Verifiers
	幻灯片 28: Scaling Test-Time Compute via Verifiers
	幻灯片 29: Scaling Test-Time Compute via Verifiers
	幻灯片 30: Scaling Test-Time Compute via Verifiers
	幻灯片 31: Scaling Test-Time Compute via Verifiers
	幻灯片 32: Scaling Test-Time Compute via Verifiers
	幻灯片 33: Scaling Test-Time Compute via Verifiers
	幻灯片 34: Scaling Test-Time Compute via Verifiers
	幻灯片 35: Scaling Test-Time Compute via Verifiers
	幻灯片 36: Scaling Test-Time Compute via Verifiers
	幻灯片 37: Scaling Test-Time Compute via Verifiers
	幻灯片 38: Scaling Test-Time Compute via Verifiers
	幻灯片 39: Scaling Test-Time Compute via Verifiers
	幻灯片 40: Scaling Test-Time Compute via Verifiers
	幻灯片 41: Scaling Test-Time Compute via Verifiers
	幻灯片 42: Scaling Test-Time Compute via Verifiers
	幻灯片 43: Scaling Test-Time Compute via Verifiers
	幻灯片 44: Scaling Test-Time Compute via Verifiers
	幻灯片 45: Scaling Test-Time Compute via Verifiers
	幻灯片 46: Scaling Test-Time Compute via Verifiers
	幻灯片 47: Scaling Test-Time Compute via Verifiers
	幻灯片 48: Scaling Test-Time Compute via Verifiers
	幻灯片 49: Scaling Test-Time Compute via Verifiers
	幻灯片 50: Scaling Test-Time Compute via Verifiers
	幻灯片 51: Scaling Test-Time Compute via Verifiers
	幻灯片 52: Scaling Test-Time Compute via Verifiers
	幻灯片 53: Scaling Test-Time Compute via Verifiers
	幻灯片 54: Scaling Test-Time Compute via Verifiers
	幻灯片 55: Scaling Test-Time Compute via Verifiers
	幻灯片 56: Scaling Test-Time Compute via Verifiers
	幻灯片 57: Scaling Test-Time Compute via Verifiers
	幻灯片 58: Scaling Test-Time Compute via Verifiers
	幻灯片 59: Scaling Test-Time Compute via Verifiers
	幻灯片 60: Scaling Test-Time Compute via Verifiers
	幻灯片 61: Scaling Test-Time Compute via Verifiers
	幻灯片 62: Refining the Proposal Distribution
	幻灯片 63: Refining the Proposal Distribution
	幻灯片 64: Refining the Proposal Distribution
	幻灯片 65: Refining the Proposal Distribution
	幻灯片 66: Refining the Proposal Distribution
	幻灯片 67: Refining the Proposal Distribution
	幻灯片 68: Refining the Proposal Distribution
	幻灯片 69: Refining the Proposal Distribution
	幻灯片 70: Refining the Proposal Distribution
	幻灯片 71: Pre-train or Inference?
	幻灯片 72: Pre-train or Inference?
	幻灯片 73: Pre-train or Inference?
	幻灯片 74
	幻灯片 75: Takeaways for exchanging pretrain and test-time compute
	幻灯片 76: Takeaways for exchanging pretrain and test-time compute
	幻灯片 77: Takeaways for exchanging pretrain and test-time compute
	幻灯片 78: Takeaways for exchanging pretrain and test-time compute
	幻灯片 79: Takeaways for exchanging pretrain and test-time compute
	幻灯片 80: Takeaways for exchanging pretrain and test-time compute
	幻灯片 81: Take-home messages
	幻灯片 82: Take-home messages
	幻灯片 83: Take-home messages
	幻灯片 84: Take-home messages
	幻灯片 85: Take-home messages
	幻灯片 86: Take-home messages
	幻灯片 87: Take-home messages
	幻灯片 88: Take-home messages
	幻灯片 89: Take-home messages
	幻灯片 90: Take-home messages
	幻灯片 91: Take-home messages
	幻灯片 92: Thanks for your listening!

