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TL; DR.
Explores two main strategies (PRM & Refining the Proposal Distribution)

for scaling LLM reasoning at test-time.
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W h e I e L Our large-scale reinforcement learning algorithm teaches the model how to think
at I S C a, I n g aw productively using its chain of thought in a highly data-efficient training process. We have

found that the performance of ol consistently improves with more reinforcement learning

(train-time compute) and with more time spent thinking (test-time compute). The
constraints on scaling this approach differ substantially from those of LLM pretraining, and
we are continuing to investigate them.

* For training Openai ol

* Scaling Law for both train-time and
te St'ti m e o o1 AIME accuracy o1 AIME accuracy

during training at testtime
e Question?
* What do they mean by “test-time

compute”?
And how to scale up “test-time 7 7
compute’?

* A shift from “system-1" to
€6 Syste m _2’ 9 reaSO n i ng. train-time compute (log scale) test-time compute (log scale)

ol performance smoothly improves with both train-time and test-time compute

[I] OpenAl “Learning to Reason with LLMs”. 2024.09



How to scale up test-time compute?

* For optimizing input (prompting)
* Basic prompting techniques
* Few-shot prompting
* CoT prompting
* Learning to prompt (using neural networks)
* RLPrompt!]
- DSPy[3!
* Already built into python packages and widely used

* And many other techniques for optimizing prompts...

[2] Deng et al.,“RLPrompt: Optimizing Discrete Text Prompts with Reinforcement Learning” EMNLP 2022
[3] Khattab et al.,“DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines” RO-FoMo@NeurIPS 2023



How to scale up test-time compute?

* For refining output distribution

* How to let LLM generate better CoT rationales?
* SFT works.
* SFT with collected CoT rationales can let LLM generate better reasoning traces.
* Take a step further, how to let LLM keep revising its CoT rationales and
gradually approach a more reasonable answer?
* Tree-of-Thought
* Monte-Carlo Tree Search

* Both of them contribute to training a verifier to help refine the output
distribution at test-time.



The scaling-up strategies for test-time

* Scaling Test-Time Compute via Verifiers
* Training verifiers to search
* Search Methods Against a verifier

* Refining the Proposal Distribution
* Parallel Sampling v.s. Sequential Revisions
* Trading off between them

* [Q] Aren’t they talking about test-time? Why are they still training?

* To scale up compute at test-time,
we cannot do it without post-training.



Scaling Test-Time Compute via Verifiers

e So what are verifiers!?
* ORM: Outcome-supervised Reward Model @

* PRM: Process-supervised Reward Model

— 4 R
Next question: How to train a PRM? :

PRM <= Output + Label + supervision of rationales !

ORM <= Output + Label [ @]

A CoT rationale




Scaling Test-Time Compute via Verifiers

e How to train a PRM?

(We only discuss the case that you cannot afford the annotations by human. @4 )
* Instead of directly annotating each reasoning step, we estimate the quality of them.

 The quality of a reasoning step is defined as its potential to deduce the correct answer.[]
(Just like a soft label)

Problem: Let p(x) be a monic polynomial of degree 4. Three ] [ Golden Answer: 24

| of the roots of p(x)are 1, 2, and 3. Find p(0) + p(4).

Solution: § = 84,55, 83,"*", Sk H Answer: 20 X I (a) Outcome Annotation: yg = 0

o y
' ™ ) ]
Problem: .... » Sz10* S31 > —» Sg,1[* Answer:24 v
S4: Since three of the |
s
roots of pyx)are 1, 2, and P Szz[* Szz[ ™ * Skg,2 [®  Answer: 24 v
3, we can write : p(x) = \ h ‘
. . . ) . h
L (x-1)(x-2)(x-3)(x-r). . M Sy ¥ Sz > —* Skg,3[ * Answer:20 X
b): Process Annotation: Y55 = 5 ; yi5 = 1
(b): Process Annotation: y;’= 3 Ys, =

e -
i B

s;: the £th step of the solution §.  §;;: the /th step of the j-th finalized solution.

L A

[4] Wang et al.,“Math-Shepherd:Verify and Reinforce LLMs Step-by-step without Human Annotations” arXiv 24.02




Scaling Test-Time Compute via Verifiers

* How to score with the verifier (Answer aggregation)

* To select the best-of-N answers with the PRM, we need to aggregate across all the
per-step scores for each answer to determine the best candidate.

* Step-wise aggregation (inside-answer)
* Inter-answer aggregation (between-answer)

Input Input



Scaling Test-Time Compute via Verifiers

* How to score with the verifier (Answer aggregation)
* Step-wise aggregation
* (How to calculate the score for a single answer?)

« Some work[*IP] aggregating the per-step scores by taking the
product or minimum

* This paper finds that using the score of the last step performs best
with their PRM.

* Inter-answer aggregation
* (How to choose the best answer candidate)

* Marginalizing scores across all solutions with the same final answer.
(“weighted aggregation”)

[5] Lightman et al. (OpenAl),“Let’s verify step by step” ICLR 2024

Input

A CoT rationale




Scaling Test-Time Compute via Verifiers

* Search Methods Against a verifier

Best-of-N Beam Search Lookahead Search
——————— =
_______ I g - - - = ' Beam caaroh, but at sach ciep |
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Key: r - _I
I ] = Apply Verifier = Full Solution = Intermediate solution step = Selected by verifier = Rejected by verifier
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Scaling Test-Time Compute via Verifiers

Best-of-N
* Search Methods Against a verifier - = == == -

selecting the best one with the

* (weighted) Best-of-N e

* Just sample N answers independently
from the base LLM

* Select the candidate according to the
PRM’s answer aggregation calculation.

Select the best final answer using the verifier



Scaling Test-Time Compute via Verifiers

Beam Search

* Search Methods Against a verifier roo T
 Beam Search L

e Control a total number N and a beam
width M (N=4, M=2) (> (2= (SO g
* Similar to the to the LM decoding strategy ' _™_ > D
“beam search” (Difference that each node (= fé‘n r{r/- -
I |

denotes the intermediate reasoning step 1 (1 |

here.) T o T T
(A > | ( fg_l
l | | l l l | l

Select the best final answer using the verifier 12



Scaling Test-Time Compute via Verifiers

Lookahead Search

* Search Methods Against a verifier oy s |
* Lookahead Search L 'L o
° Based on beam Search’ it modiﬁes hOW to T gy AN e e aeaes _

evaluate each step.

* Rollout k steps and having the score at the o
k-th step as the score of current reasoning Y
rationale. f | Ir

* (Main idea is just like A* / Monte-Carlo
Tree Search)

Continue Search from
the top-N options

-----------------------------------



Scaling Test-Time Compute via Verifiers

* Experimental setup
* Two main factors affecting the performances
* Generation budget
* e.g. Number of sampling

* Difficulty of question

* Easy questions may do not require much reasoning, while hard questions need much
reasoning.



Scaling Test-Time Compute via Verifiers
* Results & Findings

* When bUdget IS Sma”, Comparing PRM Search Methods
beam search > best-of-N > lookahead

* When budget is large,
best-of-N > beam search > lookahead

=Y
[

35 /
—

[#5]
=]

* Possible explanations

* When budget is small, we need more
sophisticated searching strategy (simply
sampling may be hard to hit).

== 3 Step Lockahead; M := sqrt{N)

* When budget is large, it will alleviate this o e s
problem. S 3 5 ) 2

Generation Budget

Best-of-N Weighted
== Majority

== Beam: M := sqri{N)
s Beam; M =4
== 1 Step Lookahead; M := sgrt{N})

MATH Test Accuracy (%)
S &

-
o

-y
=

* Lookahead search generally underperforms,
probably due to over-optimizing for searching.



Scaling Test-Time Compute via Verifiers

* Results & Findings

(FOUI" Bars under each b|n demotes the Comparing Beam Search and Best-of-N by Difficulty Level
searching budget: 4, 16, 64,256) e —

Best-of-N Weighted
* On simplest questions (1, 2),

I Majority
best-of-N > beam search I
| l
iI
II I|II
I.II .

e On hard questions (3, 4),
Test Questions Binned by Increasing Difficulty Level

o
=]

(s3]
o

beam search > best-of-N

* On the hardest questions (5),
nothing works

MATH Test Accuracy (%)
I
o

B
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Refining the Proposal Distribution

If $f(x) = Wrac{3x-2H{x-2}3, what is the value of $f(-2) +f(-1)+f(0)$? Express your answer as a
common fraction.

Attempt 1:

* LLMs can learn to generate

wWe have $f(-2)=\frac{3(-2)-2}{-2-2}=-\frac{a}{-4}="frac{1}{1}=1%.
So $F(-2)=1%.

better rationales via SFT with

We have &f(-1)=\frac{3(-1)-2}{-1-2}=-\frac{5}{-3}=\frac{5}{3}%.
So $F(-1)=M\frac{5}{3}%.

nigh-quality data.

We have ST(0)=\frac{3(e)-2}{0-2}=\frac{-2}{-2}=1%.
So $f(0)=1%.

S We W t t . te
o After that’ We Can Iet LLMS 52+\?ra225}{;}:;Tslrjr:c{a}{3}+\rrac{E}{B}—\rrac{3+5}{3}—\rrac{8}{3}$.
So the answer is $\boxed{\frac{8}{3}}%.
M M #### \frac{8}{3}
refine their proposal
. . . Attempt 2:
dlStrlbutlonS. Let's first find $F(-2)%.

§F(-2) = \frac{3(-2)-23{-2-2} = \frac{-6-2}{-4} = “\frac{-8}{-4} = 2%.
. . Now let's find $T(-1)%.
$F(-1) = \frac{3(-1)-2}{-1-2} = \frac{-3-2}{-3} = \frac{-5}{-3} = \frac{5}{3}s.
* Primarily there are two U e e e e e - e ()
o o o $F(0) = \frac{3(e)-2}{6-2} = \frac{-2}{-2} = 1%.
So we have $Ff(-2) +f(-1)+f(8) = 2+\frac{5}{3}+1 =
Strategles for reflnlng Output \?raz{;;::;}+\frac{;};:3;+\l.1':’ac{3}{3} :H\frac{?l5+3}{3} = Afrac{15}{3} = 5%.

So the answer is $\boxed{5}%.

distribution w o

Attempt 3:

.
o Para”el Sampllng Let's plug in $-2%, $-1%, and $6% for $x$ in $F(x)$.

We get $f(-2) = “frac{23(-2)-23{-2-2} = “frac{-8%{-4} = “frac{2}{1} = 2, f(-1) =

* Sequential revisions fractsrioy < aa.] 7 \frac(-SHea) = Mracta} ), 1(0) = Mracla(@)-2(e-a) -
So we have $2+\frac{5}{3}+1=\Trac{6}{3}+\frac{5}{3}+ \frac{3}{3}=\Trac{14}{3}%.
So the answer is $\bhoxed{\frac{14}{3}}%. |7
#a## Nfrac{14} {3}




Refining the Proposal Distribution

* Two major methods for refining the proposal distribution
* Parallel Sampling v.s. Sequential Revisions
* (global search v.s. local refinement)

Parallel Sampling Sequential Revisions
( _ b LM proposes a sequence of revisions, each
\ A:So 7/4 yap/dap ... conditioned on previous revisions
Sépg,tgzp; =7 ‘ \ LM proposes answers Q: Ifddaps=7
vaps=3baps, —» LM A: We have 4 dap. .. independently, in yaps, and &
how many daps L i J | parallel yaps=3baps, —» LM A:We ... A:So ... A lf7/4 ...
equal 42 baps? how many daps
p equal 42 baps?
A:If 7/4 yaps/dap ...
A

J




Refining the Proposal Distribution

* However, there are many problems
* Eg.
* For sequential revision, the last attempt is not guaranteed to be correct.

(There is case that it is revised correctly in the middle, and then revised
incorrectly at last.)

* For both of them, it’s not guaranteed to have correct attempts.



Refining the Proposal Distribution

* Utilizing verifiers to help
refinement

e Parallel Best-of-N
* Sequential Revisions

* Combining Sequential / Parallel

* Trading off between them?

Key:

Using Revision Model + Verifier at (~~
Inference Time

I
I | = Apply Verifier = Selected by verifier

- —

= Rejected by verifier

Parallel Best-of-N

-

-
®,

o

.

Verifier
selects
the best
answer

Sequential Revisions
Verifier selects

the best answer

(|
Question \.||.|I.II.II.II

(1 (a1 (
B TR TEY HERA

. M B j— Verifier

[ I
: ,  selects the

Verifier selects the best o best answer

EIEETE answer within each chain :r. : across chains
V. 7. V. | 4

( _-l r _-I f _'I I’ _-I s

@, ©®,. 0, O, .

[— - -+ e o - -

~
-~ -

e -
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Refining the Proposal Distribution

* Trading off between parallel sampling
& sequential revisions
* (Generation budget)

* Under low budget, performances
increase with more sequential revisions.

* Under higher budgets, there is an ideal
ratio that strikes a balance between
them.

MATH Test Accuracy (%)

45
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15

2—?

Varying Sequential/Parallel with Verifier

57"

I R, 2

Sequential/Parallel Ratio

5
2

2?

21

Number of Generations



Refining the Proposal Distribution

* Trading off between parallel sampling
& sequential revisions
* (Question difficulty)

* Easier questions attain the best
performance with full sequential
compute.

* On the harder questions, there is an
ideal ratio of sequential to parallel test-
time compute.

Revisions@128, Varying the Sequential to Parallel Ratio

1 2 3 4 &

Test Questions Binned by Increasing Difficulty Level

& [=2] o
[=] =] =]

MATH Test Accuracy (%)

]
=]
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Pre-train or Inference!?

* Q: How much better can the results under the inference scaling law
be than under the pretraining scaling law?

* In other words, if we assign the same amount of computing to
inference and pretrain, how about the performances!?



Pre-train or Inference!?

* Experimental results

Comparing Test-time and Pretraining Compute

Revisions PRM Search
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Findings

|. For easy questions or in settings with a lower inference load (R << |), test-time compute
can generally outperform scaling model parameters.

2. For harder questions or in settings with a higher inference load (R >> 1), pretraining is a
more effective way to improve performance.

Comparing Test-time and Pretraining Compute

Revisions PRM Search
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Takeaways for exchanging pretrain and test-time compute

* Test-time and pretraining compute are not |-to-| “exchangeable”.

* On easy and medium questions, which are within a model’s
capabilities, or in settings with small inference requirement, test-time
compute can easily cover up for additional pretraining.

* However, on challenging questions which are outside a given base
model’s capabilities or under higher inference requirement,
pretraining is likely more effective for improving performance.

26



Relative Improvement in Accuracy
From Test-time Compute (%)

Takeaways for exchanging pretrain and test-time compute

* Some sum-up experimental results

Iteratively Revising Answers at Test-time Test-time Search Against a PRM Verifier

Comparing Test-time and Pretraining Compute
in a FLOPs Matched Evauation Comparing Test-time and Pretraining Compute
in a FLOPs Matched Evauation

[4%]
[=]

20 +19.1%

)
o

+16.7%

o

o

=10

Relative Improvement in Accuracy
From Test-time Compute (%)

30 ® Easy Questions @ Easy Questions
® Medium Questions ® Medium Questions
@ Hard Questions —50 @® Hard Questions
=40
<< ~=1 >>1 <<1 ~=1 >>1

Ratio of Inference Tokens to Pretraining Tokens Ratio of Inference Tokens to Pretraining Tokens 27



Take-home messages

* Takeaways
* For compute-optimal scaling of verifiers

* Beam-search is more effective on harder questions and at lower compute
budgets, whereas best-of-N is more effective on easier questions and at higher
budgets.

* Moreover, by selecting the best search setting for a given question difficulty and
test-time compute budget, we can nearly outperform best-of-N using up to

28



Take-home messages

* Takeaways
* For compute-optimal scaling by refining the proposal distribution with revisions

* There exists a tradeoff between sequential (e.g. revisions) and parallel (e.g.
standard best-of-N) test-time computation, and the ideal ratio of sequential to
parallel test-time compute depends on both the compute budget and the specific
question at hand.

* Specifically, easier questions benefit from purely sequential test-time compute,
whereas harder questions often perform best with some ideal ratio of sequential
to parallel compute.

* Moreover, by optimally selecting the best setting for a given question difficulty
and test-time compute budget, we can outperform the parallel best-of-N
baseline using up to



Take-home messages

* Test-time and pretraining compute are not |-to-| “exchangeable”.

* On easy and medium questions, which are within a model’s
capabilities, or in settings with small inference requirement, test-time
compute can easily cover up for additional pretraining.

* However, on challenging questions which are outside a given base
model’s capabilities or under higher inference requirement,
pretraining is likely more effective for improving performance.

30



Thanks for your listening!

* Q &A
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