
Presented by:

Jiaxi Li

Scaling LLM Test-Time Compute Optimally can be 

More Effective than Scaling Model Parameters

[arXiv 24.08]

TL; DR. 

Explores two main strategies (PRM & Refining the Proposal Distribution)

for scaling LLM reasoning at test-time.



What is Scaling Law

• For training Openai o1
• Scaling Law for both train-time and 

test-time.

• Question?
• What do they mean by “test-time 

compute”? 
And how to scale up “test-time 
compute”?

• A shift from “system-1” to 
“system-2” reasoning.

2[1] OpenAI “Learning to Reason with LLMs”. 2024.09



How to scale up test-time compute?

• For optimizing input (prompting)
• Basic prompting techniques

• Few-shot prompting

• CoT prompting

• Learning to prompt (using neural networks)
• RLPrompt[2]

• DSPy[3]

• Already built into python packages and widely used

• And many other techniques for optimizing prompts…

3[3] Khattab et al., “DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines” R0-FoMo@NeurIPS 2023

[2] Deng et al., “RLPrompt: Optimizing Discrete Text Prompts with Reinforcement Learning” EMNLP 2022



How to scale up test-time compute?

• For refining output distribution
• How to let LLM generate better CoT rationales?

• SFT works.

• SFT with collected CoT rationales can let LLM generate better reasoning traces.

• Take a step further, how to let LLM keep revising its CoT rationales and 
gradually approach a more reasonable answer?
• Tree-of-Thought

• Monte-Carlo Tree Search

• …

• Both of them contribute to training a verifier to help refine the output 
distribution at test-time.

4



The scaling-up strategies for test-time

• Scaling Test-Time Compute via Verifiers
• Training verifiers to search

• Search Methods Against a verifier

• Refining the Proposal Distribution
• Parallel Sampling v.s. Sequential Revisions

• Trading off between them

• [Q] Aren’t they talking about test-time? Why are they still training?

• To scale up compute at test-time, 
we cannot do it without post-training.

5



Scaling Test-Time Compute via Verifiers

• So what are verifiers?
• ORM: Outcome-supervised Reward Model

• PRM: Process-supervised Reward Model

6A CoT rationale

ORM <= Output + Label

PRM <= Output + Label + supervision of rationales

Next question: How to train a PRM?



Scaling Test-Time Compute via Verifiers

• How to train a PRM?
(We only discuss the case that you cannot afford the annotations by human. )

• Instead of directly annotating each reasoning step, we estimate the quality of them.

• The quality of a reasoning step is defined as its potential to deduce the correct answer.[4] 

(Just like a soft label)

7
[4] Wang et al., “Math-Shepherd: Verify and Reinforce LLMs Step-by-step without Human Annotations” arXiv 24.02



Scaling Test-Time Compute via Verifiers

• How to score with the verifier (Answer aggregation)
• To select the best-of-N answers with the PRM, we need to aggregate across all the 

per-step scores for each answer to determine the best candidate.
• Step-wise aggregation (inside-answer)

• Inter-answer aggregation (between-answer)

8

……



Scaling Test-Time Compute via Verifiers

• How to score with the verifier (Answer aggregation)
• Step-wise aggregation 

• (How to calculate the score for a single answer?)

• Some work[4][5] aggregating the per-step scores by taking the 
product or minimum

• This paper finds that using the score of the last step performs best 
with their PRM.

• Inter-answer aggregation
• (How to choose the best answer candidate)

• Marginalizing scores across all solutions with the same final answer. 
(“weighted aggregation”)

9

A CoT rationale

[5] Lightman et al. (OpenAI), “Let’s verify step by step” ICLR 2024



Scaling Test-Time Compute via Verifiers

• Search Methods Against a verifier

10



Scaling Test-Time Compute via Verifiers

• Search Methods Against a verifier
• (weighted) Best-of-N

• Just sample N answers independently 
from the base LLM

• Select the candidate according to the 
PRM’s answer aggregation calculation.

11



Scaling Test-Time Compute via Verifiers

• Search Methods Against a verifier
• Beam Search

• Control a total number N and a beam 
width M (N=4, M=2)

• Similar to the to the LM decoding strategy 
“beam search” (Difference that each node 
denotes the intermediate reasoning step 
here.)

12



Scaling Test-Time Compute via Verifiers

• Search Methods Against a verifier
• Lookahead Search

• Based on beam search, it modifies how to 
evaluate each step.

• Rollout k steps and having the score at the 
k-th step as the score of current reasoning 
rationale.

• (Main idea is just like A* / Monte-Carlo 
Tree Search)

13



Scaling Test-Time Compute via Verifiers

• Experimental setup
• Two main factors affecting the performances

• Generation budget
• e.g. Number of sampling

• Difficulty of question
• Easy questions may do not require much reasoning, while hard questions need much 

reasoning.

14



Scaling Test-Time Compute via Verifiers

• Results & Findings 
• When budget is small, 

beam search > best-of-N > lookahead

• When budget is large,
best-of-N > beam search > lookahead

• Possible explanations
• When budget is small, we need more 

sophisticated searching strategy (simply 
sampling may be hard to hit).

• When budget is large, it will alleviate this 
problem.

• Lookahead search generally underperforms, 
probably due to over-optimizing for searching.

15



Scaling Test-Time Compute via Verifiers

• Results & Findings
(Four Bars under each bin demotes the 
searching budget: 4, 16, 64, 256)

• On simplest questions (1, 2),
best-of-N > beam search

• On hard questions (3, 4),
beam search > best-of-N

• On the hardest questions (5),
nothing works

16



Refining the Proposal Distribution

• LLMs can learn to generate 
better rationales via SFT with 
high-quality data.

• After that, we can let LLMs 
refine their proposal 
distributions.

• Primarily there are two 
strategies for refining output 
distribution
• Parallel sampling

• Sequential revisions
17



Refining the Proposal Distribution

• Two major methods for refining the proposal distribution
• Parallel Sampling v.s. Sequential Revisions

• (global search v.s. local refinement)

18



Refining the Proposal Distribution

• However, there are many problems
• E.g.

• For sequential revision, the last attempt is not guaranteed to be correct. 
(There is case that it is revised correctly in the middle, and then revised 
incorrectly at last.)

• For both of them, it’s not guaranteed to have correct attempts.

19



Refining the Proposal Distribution

• Utilizing verifiers to help 
refinement
• Parallel Best-of-N

• Sequential Revisions

• Combining Sequential / Parallel
• Trading off between them?

20



Refining the Proposal Distribution

• Trading off between parallel sampling 
& sequential revisions
• (Generation budget)

• Under low budget, performances 
increase with more sequential revisions.

• Under higher budgets, there is an ideal 
ratio that strikes a balance between 
them.

21



Refining the Proposal Distribution

• Trading off between parallel sampling 
& sequential revisions
• (Question difficulty)

• Easier questions attain the best 
performance with full sequential 
compute. 

• On the harder questions, there is an 
ideal ratio of sequential to parallel test-
time compute.

22



Pre-train or Inference?

• Q: How much better can the results under the inference scaling law 
be than under the pretraining scaling law? 

• In other words, if we assign the same amount of computing to 
inference and pretrain, how about the performances?

23



Pre-train or Inference?

• Experimental results

24
: model with 14x parameters



25
: model with 14x parameters

Findings

1. For easy questions or in settings with a lower inference load (𝑅 << 1), test-time compute 

can generally outperform scaling model parameters. 

2. For harder questions or in settings with a higher inference load (𝑅 >> 1), pretraining is a 

more effective way to improve performance.

: model with 14x parameters



Takeaways for exchanging pretrain and test-time compute

• Test-time and pretraining compute are not 1-to-1 “exchangeable”. 

• On easy and medium questions, which are within a model’s 
capabilities, or in settings with small inference requirement, test-time 
compute can easily cover up for additional pretraining. 

• However, on challenging questions which are outside a given base 
model’s capabilities or under higher inference requirement, 
pretraining is likely more effective for improving performance.

26



Takeaways for exchanging pretrain and test-time compute

• Some sum-up experimental results

27

Iteratively Revising Answers at Test-time Test-time Search Against a PRM Verifier



Take-home messages

• Takeaways
• For compute-optimal scaling of verifiers

• Beam-search is more effective on harder questions and at lower compute 
budgets, whereas best-of-N is more effective on easier questions and at higher 
budgets. 

• Moreover, by selecting the best search setting for a given question difficulty and 
test-time compute budget, we can nearly outperform best-of-N using up to 4x 
less test-time compute.

28



Take-home messages

• Takeaways
• For compute-optimal scaling by refining the proposal distribution with revisions

• There exists a tradeoff between sequential (e.g. revisions) and parallel (e.g. 
standard best-of-N) test-time computation, and the ideal ratio of sequential to 
parallel test-time compute depends on both the compute budget and the specific 
question at hand. 

• Specifically, easier questions benefit from purely sequential test-time compute, 
whereas harder questions often perform best with some ideal ratio of sequential 
to parallel compute. 

• Moreover, by optimally selecting the best setting for a given question difficulty 
and test-time compute budget, we can outperform the parallel best-of-N 
baseline using up to 4x less test-time compute.

29



Take-home messages

• Test-time and pretraining compute are not 1-to-1 “exchangeable”. 

• On easy and medium questions, which are within a model’s 
capabilities, or in settings with small inference requirement, test-time 
compute can easily cover up for additional pretraining. 

• However, on challenging questions which are outside a given base 
model’s capabilities or under higher inference requirement, 
pretraining is likely more effective for improving performance.

30



Thanks for your listening!

• Q & A

31


	幻灯片 1
	幻灯片 2: What is Scaling Law
	幻灯片 3: How to scale up test-time compute?
	幻灯片 4: How to scale up test-time compute?
	幻灯片 5: The scaling-up strategies for test-time
	幻灯片 6: Scaling Test-Time Compute via Verifiers
	幻灯片 7: Scaling Test-Time Compute via Verifiers
	幻灯片 8: Scaling Test-Time Compute via Verifiers
	幻灯片 9: Scaling Test-Time Compute via Verifiers
	幻灯片 10: Scaling Test-Time Compute via Verifiers
	幻灯片 11: Scaling Test-Time Compute via Verifiers
	幻灯片 12: Scaling Test-Time Compute via Verifiers
	幻灯片 13: Scaling Test-Time Compute via Verifiers
	幻灯片 14: Scaling Test-Time Compute via Verifiers
	幻灯片 15: Scaling Test-Time Compute via Verifiers
	幻灯片 16: Scaling Test-Time Compute via Verifiers
	幻灯片 17: Refining the Proposal Distribution
	幻灯片 18: Refining the Proposal Distribution
	幻灯片 19: Refining the Proposal Distribution
	幻灯片 20: Refining the Proposal Distribution
	幻灯片 21: Refining the Proposal Distribution
	幻灯片 22: Refining the Proposal Distribution
	幻灯片 23: Pre-train or Inference?
	幻灯片 24: Pre-train or Inference?
	幻灯片 25
	幻灯片 26: Takeaways for exchanging pretrain and test-time compute
	幻灯片 27: Takeaways for exchanging pretrain and test-time compute
	幻灯片 28: Take-home messages
	幻灯片 29: Take-home messages
	幻灯片 30: Take-home messages
	幻灯片 31: Thanks for your listening!

